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Abstract

A model is presented for aerodynamic lift of wind turbine profiles under dynamic stall. The model combines memory

delay effects under attached flow with reduced lift due to flow separation under dynamic stall conditions. The model is

based on a backbone curve in the form of the static lift as a function of the angle of attack. The static lift is described by

two parameters, the lift at fully attached flow and the degree of attachment. A relationship between these parameters

and the static lift is available from a thin plate approximation. Assuming the parameters to be known during static

conditions, nonstationary effects are included by three mechanisms: a delay of the lift coefficient of fully attached flow

via a second-order filter, a delay of the development of separation represented via a first-order filter, and a lift

contribution due to leading edge separation also represented via a first-order filter. The latter is likely to occur during

active pitch control of vibrations. It is shown that all included effects can be important when considering wind turbine

blades. The proposed model is validated against test data from two load cases, one at fully attached flow conditions and

one during dynamic stall conditions. The proposed model is compared with five other dynamic stall models including,

among others, the Beddoes–Leishman model and the ONERA model. It is demonstrated that the proposed model

performs equally well or even better than more complicated models and that the included nonstationary effects are

essential for obtaining satisfactory results. Finally, the influence of camber and thickness distribution on the backbone

curve are analysed. It is shown that both of these effects are adequately accounted for via the static input data.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Wind turbines are designed with increasingly slender blades and blade controls that can react rapidly to changing

loading conditions. Thus, it becomes increasingly important to account for nonstationary load effects. The basic

nonstationary mechanisms are illustrated in Fig. 1, showing a typical airfoil profile with relative flow velocity V, angle

of attack a, and lift force L per unit length. The lift force is represented via the nondimensional lift coefficient cL,

defined by

L ¼ cL
1
2
rV2c, (1)
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 2. Lift coefficient under static and dynamic stall situations: – –, static lift; —, dynamic lift (Leishman, 2000, p. 385).

Fig. 1. Principles of attached and separated flow.
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where c is the chord length. It is well established that under stationary attached flow conditions the lift force L acts

approximately in the forward quarter-point, named the aerodynamic centre, and is approximately a linear function of

the angle of attack a, when a is sufficiently small (Bisplinghoff, 1996).

At a limiting value of the angle of attack as the flow pattern changes, and the lift force passes through a maximum.

This is the phenomenon of static stall. A typical curve of the static lift coefficient cL is shown as the dashed line in Fig. 2.

Stall is associated with separation of the flow at the suction side of the profile as illustrated in Fig. 1(b). The degree of

separation can be represented in an approximate way by the distance cf from the leading edge to the separation point,

where the nondimensional parameter f is a measure of the degree of separation. For fully attached flow f ¼ 1, and for

separated flow f decreases towards zero with increasing separation.

Under nonstationary conditions, it takes some time for the flow to approach the stationary flow pattern. For fully

attached flow, analytic solutions can be obtained for harmonic motion of the airfoil as well as for a step function change

in position (Fung, 1993, pp. 206). In principle, these solutions involve translation as well as rotation of the airfoil, but

for the present purpose it is sufficient to combine the effect of the motion into an effective angle of attack. This is

described in Section 4. The analytical solutions indicate delayed lift during fully attached conditions with a lower lift at

increasing a and higher lift at decreasing a compared to the quasi-static solution. This effect is also seen on the dynamic

lift in Fig. 2 at low angles of attack. When the flow is separated during the motion, the degree of attachment,

represented by the parameter f, also exhibits delay with respect to its stationary value. The delay in the flow and the

degree of separation for harmonic motion influences the stall phenomenon. A typical dynamic stall curve is plotted as

the full line in Fig. 2. It is seen that for a harmonic variation of the angle of attack a between 0� and 15�, the occurrence

of stall is delayed, and the lift during the phase of decreasing a is considerably lower than during the increasing phase.

Thus, dynamic stall typically involves an increased range of attached flow and different branches for increasing and

decreasing angle of attack.
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Fig. 3. Flow visualisation of a CFD calculation performed on a NACA-0015 wing section during dynamic stall conditions. (a) Leading

edge separation starts. (b) Vortex build-up at the leading edge. (c) Detachment of leading edge vortex and build-up of trailing edge

vortex. (d) Detachment of trailing edge vortex and breakdown of leading edge vortex (VISCWIND, 1999).
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In addition to trailing edge separation, a separation bubble may develop in the boundary layer at the suction side of

the profile close to the leading edge, a phenomenon characteristic for thin profiles. In front of the bubble the boundary

layer is attached, whereas behind the bubble two situations can occur. In one case, the boundary layer downstream of

the bubble is turbulent, enhancing the tendency of attachment. This situation is illustrated in Fig. 1(b). In the other case,

the boundary layer detaches fully, creating separation from the leading to the trailing edge. Under quasi-static

conditions, the situation is very unstable, and in fact both situations can occur at the same angle of attack. Hence, two

different lift curves can occur (Bak et al., 1999). This phenomenon is called double stall. Under dynamic oscillations, the

flow will separate immediately at the separation bubble. Even though the flow is fully separated over the profile,

experimental data show an almost linearly increasing lift force (Leishman, 2000). This increase in lift is generated by a

rising pressure peak at the leading edge and a large vortex created in the turbulent wake as the trailing edge separation

point moves abruptly to the leading edge. At low pitch velocities, leading edge separation is usually no problem, but in

recent years a wish for active control of tower and blade vibrations has led to pitch control of large wind turbine wings

with pitch velocities of up to 20�=s. Also, large deformations due to flexible wings may produce high amplitude changes

in the angle of attack. Under such conditions, leading edge separation may contribute significantly to the lift. As the

angle of attack is increased, the vortex builds up in strength and finally detaches from the leading edge travelling

downstream. CFD calculations indicate the creation of a secondary vortex with opposite circulatory contribution at the

trailing edge during dynamic stall conditions. The trailing edge vortex builds up during dynamic stall, and at some point

it detaches and convects downstream similar to the leading edge vortex. A CFD calculation of a NACA-0015 profile in

dynamic stall conditions is illustrated in Fig. 3. The dynamic stall calculation has been performed by Risø National

Laboratory, Wind Energy and Atmospheric Physics Department within the EC project VISCWIND (VISCWIND,

1999). The dots indicate particles added to illustrate the flow characteristics. Fig. 3(a) illustrates the onset of leading

edge separation with the entire boundary layer starting to detach. Fig. 3(b) shows the build-up of the leading edge

vortex, which in Fig. 3(c) detaches and moves downstream, while a trailing edge vortex starts building up. Finally,

Fig. 3(d) shows the detachment of the trailing edge vortex and breakdown of the leading edge travelling vortex. Both

experimental data and CFD calculations indicate that the flow changes, caused by the leading edge separation vortex,

generate an increased suction contribution, leading to an increased lift even after flow separation has occurred. This

effect may be seen in Fig. 2 as the dynamic curve that continues to increase above the static stall angle.

At low-frequency changes of the angle of attack, flow situations including trailing edge separation occur at increasing

angle of attack, where the flow separation point moves from the trailing to the leading edge. At decreasing angle of

attack, the separation point moves back from the leading to the trailing edge. Both situations are described by the

movement of the trailing edge separation point. As the frequency increases, leading edge separation conditions are

likely to happen as illustrated in Fig. 3, especially for thin profiles. Under these conditions, no distinct position of the

trailing edge separation point can be followed and separation over the entire profile occurs more or less instantaneously

at increasing angle of attack. Flow reattachment at decreasing angle of attack mainly happens with the separation point

moving from the leading to the trailing edge, as was the case for low-frequency oscillations.

In summary, delay of lift during fully attached conditions and the motion of the separation point as well as leading

edge separation and the dynamic interaction between leading and trailing edge vortices are constituent properties of a
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load model for which dynamic stall phenomena occur. A good model of dynamic stall should describe these phenomena

for different frequencies and different amplitude ranges.

There exists a great variety of dynamic stall models in the literature. These models may be categorised into three main

groups:
(1)
 The effects of the different flow conditions described above are modelled, e.g. lift reduction due to separation, time

delay effects from leading edge separation etc.
(2)
 The characteristics of the lift curve are modelled without resort to the generating physical mechanisms, e.g. a linear

growing curve at low angles of attack, a drop in lift at a given stall angle etc.
(3)
 A modification of the angle of attack is made introducing a so-called dynamic angle of attack.
In a series of papers (Leishman and Beddoes, 1986a, b; Leishman, 1988), Beddoes and Leishman have developed a

model for dynamic stall combining the flow delay effects of attached flow with an approximate representation of the

development and effect of separation. This model was developed with helicopter rotor dynamics in mind and therefore

includes a fairly elaborate representation of the nonstationary attached flow depending on the Mach number and a

rather complex structure of the equations representing the time delays. In contrast, a model proposed by Øye (1991)

omits the transient effects of the attached flow, and represents the dynamic stall by introducing a first-order filter on a

static equivalent degree of attachment, obtained by a simple interpolation relation. Hansen et al. (2004) developed a

reduced version of the Beddoes–Leishman model at Risø National Laboratories, Denmark, omitting the effects of

compressible flow and leading edge separation. They introduced an interpolation relation similar to the one used by Øye

to make the model valid in the entire range of the angle of attack. The Beddoes–Leishman model, Øye and Risø models

may be categorised into the first group of models aiming to model the effects of the flow conditions. The so-called

ONERA model by Tran and Petot (1981) is an example of the second category of modelling. In this case, the load

coefficients are described by a third-order differential equation. The differential equation is split into a linear domain at

low angles of attack determined by a first-order differential equation, and a stall domain determined by a second-order

differential equation. Tarzanin (1972) developed a model also named the Boeing–Vertol model, based on a relation

between the dynamic stall angle and static stall angle determined by Gross and Harris (1969). From this relationship a

dynamic angle of attack is determined and the load coefficients are interpolated from the static data. Obviously, this

final model falls into the third category of modelling approaches.

In recent years, Navier–Stokes solvers have also been used to determine airfoil loads in dynamic stall situations. Due

to the extensive cost of these calculations, practical applications do not seem possible in the near future, but solving the

Navier–Stokes equations gives insight into the flow and pressure changes occurring during a dynamic stall cycle.

Srinivasan et al. (1995) used a Navier–Stokes solver to evaluate a variety of turbulence models. Du and Selig (1998,

2000) studied 3-D effects on the boundary layer flow of a rotating wind turbine blade by solving the steady boundary

layer equations. They found that the separation is slightly postponed due to rotation of the wing, which induces an

increase in lift. They suggested a modification of the 2-D static data to incorporate the rotational 3-D effects. Akbari

and Price (2003) studied the effects of several parameters including reduced frequency, mean angle of attack, location of

the pitch axis and the Reynolds number. They found that the Reynolds number and position of the pitch axis have little

effect on the characteristics of the lift cycle, however the position of pitch axis has a major effect on the pitching

moment. Wernert et al. (1996) used Particle Image Velocimetry (PIV) and Laser Sheet Visualisation to validate a

numerical code based on Navier–Stokes equations. They found that the numerical and experimental results agreed, but

some discrepancies were observed. A completely different approach is suggested by Suresh et al. (2003) using neural

network for identifying nonlinear unsteady lift. Comparing with experimental data, they show a good agreement with

their numerical model. They also argue that the proposed method is easily implemented in available codes and should

be less computationally expensive than the ONERA model.

It should be noted that larger discrepancies between numerical and experimental results seem to be accepted within

the so-called semi-empirical models described above than for the Navier–Stokes solvers. The goals of the semi-empirical

models are not to capture every variation in the load, but to model the main characteristics in a fast and efficient way.

The main drawback of the semi-empirical models is that all of them are dependent on available static data and use

interpolation into tabulated values or curve fitting techniques to determine quasi-static lift values. A semi-empirical

model should be able to reproduce these static values for quasi-static rates of the angle of attack, i.e. _a ’ 0.

In this paper, a semi-empirical dynamic stall model for the lift is formulated. The model is developed mainly with

concern for realistic wind turbine flows, hence compressibility effects are omitted. An essential part is that the model

should fit into the first category of semi-empirical models, hence the lift contributions introduced in the model should be

explained by certain changes in flow and resulting changes in pressure. The model should be applicable both at high
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pitch rates during e.g. active control or large gusts, and during normal operation conditions with low pitch rates. The

proposed model introduces an analytical solution to the static lift curve in terms of lift at separated flow conditions for

known position of the trailing edge separation point, (Krenk, 2006; Thwaites, 1960). This relation serves as a backbone

curve for the model, when the position of the trailing edge separation point is assumed to be known for all angles of

attack. These curves may be found from static experimental data. The various dynamic effects included in the model are

introduced as delay terms in the parameters of the backbone function. The model combines a simple two-term memory

kernel for the transient behaviour of the attached flow with a lift reduction due to separation, represented via a first-

order filter, giving two state parameters to describe the flow delay under full attachment and one-state parameter to

describe the delayed placement of the separation point. The reason for using two timescales under attached flow

conditions is to model with sufficient accuracy both high pitch frequencies occurring e.g. during active control or

normal operating conditions. Furthermore, an additional first-order filter is used to model the increased lift under

leading edge separation. The advantage of this compromise is that within a fairly simple model the transients of the flow

are included in a manner that is sufficiently accurate for wind turbines, and the dynamic effect of trailing edge

separation in essence only introduces one additional timescale.

The numerical algorithms for the Beddoes–Leishman, Øye, Risø, ONERA and Boeing–Vertol models are described

briefly in the Appendix. These models also use the approach of introducing the static lift curve as a backbone curve. The

Beddoes–Leishman and the Risø models use the unsteady thin plate approximation adopted in the proposed model.

Numerical simulations are made and the performance of the various models are studied and compared with existing

experimental data. In the above-mentioned analyses, the profile is assumed to be a thin plate. The effect of camber and

thickness under separated quasi-static flow conditions has recently been derived in closed form (Krenk, 2006) and can

be included directly in the format of the present model.
2. A dynamic stall model for wind turbines

2.1. Stationary lift and separation

An essential part of a nonlinear load model is the lift reduction due to separation. The lift coefficient of the profile

under fully attached flow is denoted cL0 and is often linearised for small a in the following manner:

cL0 ¼
qcL

qa

����
a0

ða� a0Þ, (2)

where a0 is the angle of attack at zero lift. For a thin plate the coefficient qcL=qa ¼ 2p, whereas the coefficient is

somewhat different for a real profile. The lift coefficient cL under separated flow can be found from Kirchhoff flow

theory using complex mapping, (Thwaites, 1960, p. 170), or more directly by a singular integral formulation of

linearised airfoil flow theory (Krenk, 2006) as

cL ’
1þ

ffiffiffi
f

p
2

 !2

cL0. (3)

According to Eq. (3), the total static lift coefficient is determined as a reduction of the linear lift according to the

attachment degree f. At fully attached flow, where f ¼ 1, cL follows cL0. As a increases, the separation point moves

towards the leading edge and f decreases. When the separation point reaches the leading edge, f ¼ 0 and cL ’
1
4
cL0

according to Eq. (3). A further increase in a will not change the location of the separation point, hence f ¼ 0, but cL0

given by Eq. (2) increases linearly with a. As a consequence, Eq. (3) predicts a linear increase with a of cL ’
1
4
cL0 for

fully separated flow. This is illustrated in Fig. 4(a) where full separation occurs at approximately 30� and the ð�Þ

symbols indicate measured lift coefficients from a NACA 63-418 profile (Abbott and von Doenhoff, 1959). According

to measured values, cL remains constant or even decreases with increasing a in this regime. To remedy this

inconsistency, a modification is needed. Here the correction will be made on cL0, which for f40 is determined as the

linearised lift coefficient given in Eq. (2), and for f ¼ 0 is set to 4cL. Hence, cL0 is determined as

cL0 ¼

qcL

qa

����
a0

ða� a0Þ; f40;

4cL; f ¼ 0

8><
>: (4)
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Fig. 5. Transformation into the complex plane.
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Fig. 4. Static coefficients; �, measured values of cL from a NACA 63-418 profile (Abbott and von Doenhoff, 1959). (a) – –, cL0

determined from Eq. (2); —, cL modelled by Eq. (3). (b) – –, cL0 determined from Eq. (4); —, cL modelled by Eq. (3). (c) —, f.
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and f is found from Eq. (3). This modification of cL0 allows the use of Eq. (3) in the entire range of a. Fig. 4(b) illustrates
that by use of Eqs. (3) and (4), it is possible to reproduce the measured cL also when full separation occurs.

The motion of the separation point may be modelled in the physical plane as done in the Beddoes–Leishman model,

the Risø model and the Øye model. However, as follows from Eq. (3) changes of the lift coefficient are related to

changes of the attachment degree as

dcL ¼
1

4
1þ

1ffiffiffi
f

p
 !

cL0 df . (5)

Hence, at fully separated conditions ðf ’ 0Þ, an increment of the degree of separation results in a large increment of the

lift coefficient. In order to circumvent this singularity, the physical profile is mapped on a unit circle as traditionally

performed in airfoil theory, see Fig. 5, where the idea is to use the angle y indicating the separation point in the complex

map, rather than f. The functional relationship transforming f into y is given by

2f ¼ 1þ cos y, (6)

which inserted in Eq. (3) gives

cL ¼ cos4ð1
4
yÞcL0. (7)

This formulation removes the square root singularity around f ¼ 0, corresponding to y ¼ p. yðaÞ is found from the

inverse relation of Eq. (7). Hence, in the numerical algorithm, a set of measured lift data cLðaÞ is needed to determine the

separation parameter yðaÞ.
The moment M may be represented by the nondimensional moment coefficient in the following manner:

M ¼ cM
1
2
rV2c2, (8)

where M is measured in the clockwise direction around the centre. Assuming the position of the separation point to be

known from Eq. (3) and measured value of cL, Krenk (2006) derived the following expression for the static moment

coefficient for a thin plate profile:

cM ¼
1

4

1þ
ffiffiffi
f

p
2

 !2

1�
1

4
ð1� 6

ffiffiffi
f

p
þ 5f Þ

� �
cL0. (9)

The moment coefficient is given in terms of the attachment degree and at fully attached flow conditions cM ¼
1
4

cL0,

which identifies the location of the aeroelastic centre at the quarter chord point. Both the Beddoes–Leishman model and

Risø models use an empirical relation for determining the movement of the centre of pressure given as cM=cL in terms of



ARTICLE IN PRESS
J.W. Larsen et al. / Journal of Fluids and Structures 23 (2007) 959–982 965
the static attachment degree, i.e. the moment coefficient is determined from the static lift and the location of the centre

of pressure.
2.2. Dynamic lift and separation

So far, only stationary conditions have been considered. In this section, the nonstationary lift is modelled due to time

dependent flow changes. Two main flow situations are considered. One is at low angles of attack with fully attached

flow, where the flow adjusts so that the separation point is located at the trailing edge, and a situation with separated

flow where the movement of the trailing edge separation point is delayed compared to the quasi-static movement.

First consider the fully attached flow situation. For a change da in the angle of attack, a small separation occurs

before the separation point is reestablished at the trailing edge by circulation built-up around the profile. This change in

circulation creates a corresponding change in lift. Hence, the increment dcL0 of the linear lift due to an increment da of

the angle of attack is not achieved instantaneously. Given the linearised conditions (2), this delay can be modelled via

the introduction of an impulse response function FðtÞ, so the increment dcL0;d ðtÞ at time t due to an increment daðtÞ at
an earlier time t can be written

dcL0;d ¼ Fðt� tÞdcL0ðtÞ. (10)

In Eq. (10) and below, the dynamic lift is indicated by the subscript d. The impulse response function fulfills Fð1Þ ¼ 1.

For incompressible flow, it can be shown for a thin profile that half the increment is felt instantaneously, so Fð0Þ ¼ 1
2
,

see (Fung, 1993, pp. 206). Upon superposition of the effects of all previous increments, the linear dynamic lift, valid for

attached flow conditions, is given as

cL0;d ðtÞ ¼

Z t

�1

Fðt� tÞ_cL0ðtÞdt. (11)

The approach chosen here for the linear lift coefficient is similar to that of the Beddoes–Leishman model, described in

Appendix A.1. However, the compressibility terms are neglected. The analytical solution of FðtÞ may be approximated

by a first-order filter with a single timescale with the initial condition Fð0Þ ¼ 1
2 and the limit Fð1Þ ¼ 1, but as mentioned

earlier, both high- and low-frequency components need to be modelled accurately, hence two timescales are needed. In

what follows, it is assumed that FðtÞ may be approximated with the expression

FðtÞ ¼ 1� A1e
�o1t � A2e

�o2t, (12)

where A1, A2, o1 and o2 are profile dependent variables describing the time delay. For a thin profile in incompressible

flow, A1 þ A2 ’
1
2
(Fung, 1993), and o1 and o2 represent the timescale for low- and high-frequency contributions,

respectively. Then a differential description of the convolution integral (11) can be obtained as follows. Let c1ðtÞ and

c2ðtÞ be state variables related to the filter, defined by the first-order differential equations

_cjðtÞ þ ojcjðtÞ ¼ Aj _cL0ðtÞ; j ¼ 1; 2. (13)

Then, cL0;d ðtÞ can be represented by the following output equation:

cL0;d ðtÞ ¼ cL0ðaÞ � c1ðtÞ � c2ðtÞ. (14)

Next consider a situation under separated flow conditions. According to Eq. (7), a step change in a is felt

instantaneously through a direct change in y. In a real flow situation, a time interval is observed during which the

separation angle moves to the new stationary value. Due to this delay, the attachment angle is lower at increasing a and

larger at decreasing a than the corresponding stationary value giving larger and lower lift forces, respectively.

Expression (14) only includes the circulatory flow lift. At large pitch rates, noncirculatory effects may contribute

significantly. The Beddoes–Leishman model (Leishman, 1988, 2000; Leishman and Beddoes, 1986a, b; Beddoes, 1978)

introduces extra state variables to account for the dynamics of the noncirculatory effects. However, when considering

wind turbine dynamics at relatively low flow velocities, it is sufficient to include the noncirculatory effects as an added

mass contribution adding an extra term pc_a=2V to cL0;d , (Hansen et al., 2004). No additional state variables or

calibration parameters are introduced via this contribution, hence the complexity and computational cost have not

increased significantly.

Due to the relation between changes in separation and lift given in Eq. (5), the nonstationary effect on cL from the

delayed separation is modelled as a delay on the separation variable. The delayed motion of the separation point and

hence the separation angle under dynamic conditions is described via a dynamic attachment angle yd obtained as the
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solution to the first-order differential equation

_yd ðtÞ ¼ �o3ðyd ðtÞ � yðaÞÞ. (15)

A similar approach has been used in the Beddoes–Leishman model, the Risø model and the Øye model, where a

dynamic attachment degree f d is used, obtained from the differential equation

_f d ðtÞ ¼ �o3ðf d ðtÞ � f ðaÞÞ. (16)

Although only valid for static conditions, the reduction of the dynamic linear lift coefficient cL0;d ðtÞ due to the dynamic

attachment angle is again calculated via Eq. (7) as follows:

cL;d ðtÞ ¼ cos4ð1
4
yd ÞcL0;d ðtÞ. (17)

2.3. Leading edge separation

As mentioned earlier, experimental data indicates that leading edge separation generates a linear increasing lift curve

even at full separation due to a pressure peak forming at the leading edge and a large vortex forming in the wake of the

profile at increasing a. Instead of modelling these contributions separately, a combined lift correction is added to cL;d ðtÞ

to create this linear lift curve. This is possible because the total lift is assumed to follow the linear curve cL0;d ðtÞ as long

as the vortex is found on the profile. Assuming this, the additional lift contribution DcLðtÞ becomes

DcLðtÞ ¼ cL0;d ðtÞ � cL;d ðtÞ. (18)

At a certain angle av, the leading edge vortex detaches from the leading edge and travels downstream over the profile with

the velocity 1
3 V , (Green et al., 1992; Beddoes, 1978). Green et al. (1992) came to approximately the same vortex convection

velocity for a variety of profiles, hence showing that the vortex travelling velocity is independent of profile shape. The

travelling vortex keeps building up strength as long as it is located somewhere on the profile. As it reaches the trailing edge,

the vortex contribution stops building up corresponding to D_cLðtÞ ¼ 0, and the vortex with opposite circulation starts to

develop at the trailing edge, see Fig. 3. The trailing edge vortex counteracts the leading edge travelling vortex and the lift

starts diminishing. This diminishing effect is assumed to be described by the following first-order differential equation:

_cL;vðtÞ þ o4cL;vðtÞ ¼
D_cLðtÞ for a4av and _a40;

0 otherwise;

(
(19)

where cL;vðtÞ is the actual value of the induced lift after the initiation of the diminishing effect. Hence, the total lift becomes

cLðtÞ ¼ cL;d ðtÞ þ cL;vðtÞ; (20)

see Fig. 6. This introduces one additional state variable cL;vðtÞ into the model. Furthermore, two profile dependent

parameters are introduced, namely o4, which controls the diminishing rate of the vortex lift, and the critical angle av at
cL

ΔcL (t)

cL0,d (t)

cL,v (t)

cL,d (t)

cL(t)

�v
�

Fig. 6. Illustration of lift components used to described leading edge separation.
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which the leading edge vortex detaches from the leading edge. Leishman and Beddoes (1986a, b) showed that av is

dependent on the tip pressure, which can be determined from a delay of cL0;d . This introduces an additional filter

equation to account for the dynamics of the tip pressure. However, when considering the pitch rates of wind turbines

the accuracy obtained from introducing an extra filter equation is relatively low considering the increased complexity

and computational cost of the model. A variable t is included to control the position of the travelling vortex. However,

assuming the travel velocity being given, this will not introduce additional parameters to be calibrated. The

dimensionless variable t is equal to 0 when the travelling vortex is located at the leading edge and t ¼ 1 when the vortex

reaches the trailing edge. Assuming constant travel velocity, the time change of t is given as

_t ¼
V

3c
for a4av;

0 otherwise:

8<
: (21)

When tX1, the vortex detaches and stops building up strength. Finally, as _ao0 a new cycle starts and t ¼ 0. These

conditions give the following modification to Eq. (19):

_cL;vðtÞ þ o4cL;vðtÞ ¼
D_cLðtÞ for to1 and _a40;

0 otherwise:

�
(22)

It should be noted that the case of aðtÞ varying at high pitch rates around av produces the possibility of several vortices in the

wake contributing to the lift, but only one can be located on the profile building up strength.

The influence on the moment coefficient from delayed circulation built-up and delayed separation may be included in

Eq. (9) directly by replacing cL0 with cL0;d and f with f d . However, the travelling vortex severely influences the

movement of the centre of pressure, which increases the complexity of modelling the moment coefficient. The

Beddoes–Leishman model includes a series of empirical expressions for determining the influence from the travelling

vortex on the moment coefficient, see e.g. Leishman and Beddoes (1986a). Further, analyses are needed to understand

the complexity of the travelling vortex on the aerodynamic loads, but this will not be further pursued here.

2.4. State variable formulation

The present model includes four state variables for every wing section at which the lift is calculated. Two variables c1
and c2 to describe the delayed linear lift, one variable yd to describe the dynamic movement of the separation angle and

one variable cL;v to describe the induced lift from the pressure peak and vortex forming under leading edge separation.

In matrix formulation, the linear differential equations describing these state variables can be organised as follows:

_zðtÞ ¼ AzðtÞ þ b0ðaÞ þ b1 _cL0ðtÞ, (23)

where

zðtÞ ¼

c1ðtÞ

c2ðtÞ

yd ðtÞ

cL;vðtÞ

2
66664

3
77775; A ¼

�o1 0 0 0

0 �o2 0 0

0 0 �o3 0

0 0 0 �o4

2
6664

3
7775, (24)

b0ðaÞ ¼

0

0

o3yðaÞ

D_cLðtÞHðav � aÞHð_aÞ

2
66664

3
77775; b1 ¼

A1

A2

0

0

2
6664

3
7775, (25)

in which HðxÞ is the unit step function. The total lift coefficient then follows from Eqs. (14), (17) and (20) as

cLðtÞ ¼ cos4ð1
4
yd ðtÞÞ½cL0ðaÞ � c1ðtÞ � c2ðtÞ� þ cL;vðtÞ. (26)

The static coefficients to be determined are cL0ðaÞ, _cL0ðtÞ and yðaÞ which all can be found from experimental static lift

coefficients. The first two are determined from the slope of cLðaÞ at a ¼ a0, with the earlier mentioned modification at

f ¼ 0, where cL0 ¼ 4cL. yðaÞ is then found from Eq. (17). Furthermore, a series of profile dependent constants are used

in the model. A1, A2, o1 and o2 are determined from fully attached conditions, i.e. on the linear part of the lift curve.

For a thin plate profile, these parameters may be determined by an appropriate second-order filter approximation to the
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Wagner function, see e.g. Jones (1940). For an actual profile, the parameters may be determined from dynamic test data

at low angles of attack. o3, o4 and av may all be determined from dynamic test data at high angles of attack.

The delay flow conditions vary with the mean velocity V and the chord length of the profile c. It is often used to

introduce nondimensional time variable depending on these quantities, see e.g. (Fung, 1993, p. 207). However, a

convenient way of introducing these effects is to adopt the variation with V and c within the timescale parameters oj ,

j ¼ 1; 2; 3; 4. This approach is also used by the Risø model described in Appendix A.4. The timescales of these models

are all defined via the following nondimensional (reduced) parameter:

ôj ¼ oj
c

2V
. (27)

Similarly, the oscillation of the airfoil is characterised by the so-called reduced frequency ô given as

ô ¼ o
c

2V
, (28)

where o is the circular frequency of the oscillation.
3. Comparison of models

The main input to all the models are the quasi-static lift data. The dynamic stall models should be able to reproduce

these in the entire range of a. At low reduced frequencies and at angles of attack below the point of full separation, all

the models generate results close to the static lift curve. At angles of attack above this point, the Beddoes–Leishman

model is no longer capable of reproducing static data, whereas the proposed model follow the static curve nicely due to

the modification CL0. This is illustrated in Fig. 7, where static data from a NACA 63-418 profile (Abbott and von

Doenhoff, 1959) is extrapolated linear from 20� into the deep stall regime to the point cLð90
�Þ ¼ 0.

The Beddoes–Leishman model also seems to perform badly at angles of attack just below fully separated flow

conditions (approximately 32�), where the lift seems to curve away from the measured values. This is caused by the way

the effective attachment degree is determined from the static data set, where linear interpolation is used in this

simulation. The problem may be solved by using quadratic interpolation, which obviously is more time consuming.

Within the proposed model, the same problems are avoided due to the complex mapping (6), which takes care of the

square root singularity at f ¼ 0.

In the following examples, the performance of the various models is validated against experimental results from wind-

tunnel tests on a Vertol 23010-1.58 airfoil. The test results are presented by Liiva (1969), and are used to verify the

Boeing–Vertol model (Tarzanin, 1972). The experimental data are produced for harmonic pitching of the airfoil at

various mean angles of attack, the amplitude Da is held constant at 4:85� and ô is kept constant at 0.062, where

c ¼ 1:5m, V ¼ 60m=s. Ideally, to calibrate the various models, a series of test data should be available at a range of

reduced frequencies, amplitudes and mean values of oscillation. The rather limited set of test data makes the calibration

of the parameters very uncertain, but the performance of the models may to some extent be analysed. Under fully
1.5
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Fig. 7. Lift coefficient for a NACA 63-418 at low reduced frequency: ô ¼ 0:0005; amean ¼ 25�; Da ¼ 15�; – –, static test data. (a) —,

Proposed model. (b) —, Beddoes–Leishman model.
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Table 1

Profile dependent parameters for the various dynamic stall models determined from dynamic test data from Vertol 23010-1.58 profile

Present Beddoes–Leishman ONERA Øye Risø Boeing–Vertol

ô1 0.0455 0.125 0.125 — 0.0455 —

ô2 0.3 0.375 0.1 — 0.3 —

ô3 0.1 0.275 — 0.07 0.0875 —

ô4 0.075 0.075 — — — —

ô5 — 2.5 — — — —

ô6 — 2.5 — — — —

ô7 — 0.4 — — 0.4125 —

A1 0.165 0.3 0.3 — 0.165 0.87

A2 0.335 0.7 0.1 — 0.335 —

A3 — 1.0 — — — —

A4 — 1.0 — — — —

av 14:75� — — — — —

c0L0;v — 1.6 — — — —

asep — — — 32� — —

z — — 0.7 — — —
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attached flow conditions the proposed model, the Beddoes–Leishman, the ONERA and the Risø models all perform

well. For the present and Risø models, the incompressible parameters given by Jones (1940) are used. The parameters of

the various models during stall conditions are calibrated by the least-square-error method between the model output

and test data. The data points used in the least-square-error method are uniformly distributed, hence, all regions of the

model are weighted equally. The calibrated parameter values are listed in Table 1. It is obvious that the Boeing–Vertol

and the Øye models are relatively easy to calibrate since only a few parameters need to be identified. The present model

has seven parameters, the Risø model has six parameters, the ONERA model has five parameters and the

Beddoes–Leishman model has 12 parameters which need calibration. The many parameters of the Beddoes–Leishman

model makes optimal calibration virtually impossible. Tran and Petot (1981) devised a method of calibrating the

ONERA model from small amplitude, low- and high-frequency test data below and above stall. Since no such variety of

test data have been available, the calibration is also done by the least-square-error method.

In Figs. 8 and 9, the various models are compared with experimental data from the Vertol 23010-1.58 profile. Test

data indicated by the symbol �, measured static data which serves as input are illustrated as dashed lines, and the

results from the calibrated dynamic stall models using parameters given in Table 1 are plotted as full lines. From the top

down in Fig. 8, the numerical results are plotted obtained from the proposed, Beddoes–Leishman and Risø models, and

in Fig. 9 from the ONERA, Øye and Boeing–Vertol models. The cyclic direction of the experimental data are indicated

by a 4, whereas the cyclic direction of the numerical simulations are indicated by c. In all cases, the cyclic direction is

indicated on the upper part of the curve, hence the arrows should point in the same direction. The subfigures to the left

illustrate the results of a test situation under fully attached flow condition with a mean angle of attack of 7:33�. As seen,

the proposed, Beddoes–Leishman, Risø and ONERA models capture the cyclic behaviour, whereas both the Øye and

Boeing–Vertol models produce results which travel in the opposite direction to the test data. To illustrate the cyclic

behaviour of the Øye and Boeing–Vertol models, a minor section of the curve is expanded in the lower right corner. The

Øye and Boeing–Vertol models are not designed to account for the dynamics of the lift curve at fully attached flow

conditions, and care should be exercised in this limiting case. To the right in Figs. 8 and 9, the mean angle of attack is

increased to 14:92�, which is in the stall regime. All models capture the correct cyclic behaviour, but especially the Øye

and the ONERA models predict a maximum lift which is approximately 10–15% below the measured value. The Øye

model fails mainly because of no travelling vortex contribution, which is significant at high reduced frequencies.

Especially, the Boeing–Vertol model captures the test data very effectively, but also the present, Risø and

Beddoes–Leishman models perform well. It should be mentioned that the test data originally was used to verify the

Boeing–Vertol model. The present and Beddoes–Leishman models predict the declining lift after the dynamic stall peak

is too high. Leishman and Beddoes (1986b) suggest an increase of the vortex dissipation after the vortex leaves the

profile, i.e. increasing o4. This modification will produce better results in this particular case for both the present and

Beddoes–Leishman models. The Risø model predicts a maximum lift, which is a little below that of the two other

models but still within an acceptable range. It should be noted that even though the state variable c0L0;d in the
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Fig. 8. Comparison between dynamic stall models and lift coefficient for a Vertol 23010-1.58 profile at various mean angles of attack.

ô ¼ 0:062.4, Cyclic direction of semi-empirical models. c, Cyclic direction of dynamic test data. – –, Static test data. �, Dynamic test

data. (a), (b) —, Present model. (c), (d) —, Beddoes–Leishman model. (e), (f) —, Risø model.
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Beddoes–Leishman and the Risø model should describe the same effect, the calibrated parameter o3 are very different.

This is due to the fact that the Risø model does not include contributions from leading edge separation, that is why

these contributions are absorbed into the trailing edge separation state variables. As seen from Fig. 8f, this works nicely

for the presented case.

Next, the performance of the present model is analysed. Fig. 10 shows the static values of cL0 and y (dashed line)

corresponding to the static lift coefficient from NACA 63-418. The reason for using the NACA 63-418 profile is to

illustrate the variation of the static and dynamic variables also during fully separated flow conditions, which is

not obtained within the angle of attack limits of the Vertol profile. A simulation of cL0;d and yd is shown as a

full line. As seen, full separation occurs at approximately 32�, where y ¼ p and cL0 is changed from the linear

approximation to 4cL.

Fig. 11 illustrate the performance of the present model at various variation of parameters. The static input (dashed

line) is from the Vertol 23010-1.58 profile, and the light full line indicates a reference case using the parameters given in

Table 1, column 2. In Fig. 11(a), the result of a simulation at low angles of attack in the fully attached flow domain is

plotted. The heavy full line illustrates a simulation with A1 ¼ 0:3 and A2 ¼ 0:7 which match the compressible

parameters of the Beddoes–Leishman model. Under compressible conditions, i.e. when A1 þ A2 ¼ 1, no

instantaneously change in lift appears for a change of the angle of attack, which, as indicated in Fig. 11(a), results

in a wider hysteresis loop at fully attached flow conditions. Figs. 11(b)–(d) illustrate numerical results during dynamic

stall conditions with amean ¼ 15� at variation of o3, o4 and av, respectively. As seen from Fig. 11(b), a change of o3 does

not influence the maximum lift significantly. Also increasing o3 by 50% from the reference value (bold line) only

introduces small deviations from the reference value. However, decreasing o3 by 50% (dashed line) introduces

significant changes to the lift, both at flow reattachment at low angles of attack and also in the deep stall regime at high
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data. (a), (b) —, ONERA model. (c), (d) —, Øye model. (e), (f) —, Boeing–Vertol model.

5

4

3

2

1

0
0 10 20 30 40

c L
0,

d 
[-

]

3.5

3

2.5

2

1.5

1

0.5

0
0 10 20 30 40

� [°] � [°]

� d
 [

ra
d]

Fig. 10. State variables of the present model during dynamic stall cycle of a NACA 63-418 profile, ô ¼ 0:062, amean ¼ 25�, Da ¼ 15�.
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angles of attack. At low values of o3, small variations in the static lift is filtered out and the curve becomes smoother.

Variations of o4 and av illustrated in Fig. 11(c) and (d), basically move the dynamic stall point up and down and

sideways, respectively. In Fig. 11(c), the dynamic lift without the vortex contribution cL;d (bold dashed lines), the vortex

contribution at these relatively high reduced frequencies is significant.



ARTICLE IN PRESS

1

0.5

1.5

0
2 4 6 8 10 12

c L
 [

-]
c L

 [
-]

c L
 [

-]

2

1.5

c L
 [

-]

1

0.5
10 12 14 16 18 20

� [°]� [°]

2

1.5

1

0.5
10 12 14 16 18 20

� [°] � [°]

2

0.5
10 12 14 16 18 20

1.5

1

Fig. 11. Lift curve of the Vertol 23010-1.58 profile at various parameter values. ô ¼ 0:062, Da ¼ 10�. – –, Quasi-static component. —,
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4. Other aspects of dynamic stall models

4.1. Aeroelastic modelling

All the indicated dynamic stall models are one-degree-of-freedom models in aðtÞ. Assume that the profile has the

translation velocities _u01ðtÞ and _u02ðtÞ in the blade and edgewise direction, respectively, the pitch velocity _aðtÞ around
the aerodynamic centre A, and exposed to turbulence components v01ðtÞ and v02ðtÞ. The flow conditions are

illustrated in Fig. 12. Assuming the wavelength of the turbulence is significantly larger than the chord-length

of the profile, the structural deformation velocities and turbulence components will introduce a uniform flow

change over the entire profile. However, the pitch motion introduces a linear flow variation over the section. These

effects are included through the introduction of an equivalent angle of attack aeqðtÞ. From the profile, the deformation

velocities and turbulence components can be regarded as a variation of the incoming velocity field; however,

due to the flow variation over the profile from the pitch velocity, this contribution cannot be included directly.

Under fully attached flow conditions with the profile moving in both heaving and pitching motions, it can

be shown that aeqðtÞ should be found from the downwash velocity at the 3
4

c point for the flow to follow the profile

and separate at the trailing edge fulfilling the so-called Kutta condition, see (Fung, 1993, pp. 401). This is illustrated

in Fig. 12.

Including turbulence components and deformation velocities as variation of the mean wind gives the following

expression for aeq:

sin aeqðtÞ ¼
V 01ðtÞ þ v01ðtÞ � _u01ðtÞ þ ðc=2Þ_aðtÞ

V ðtÞ
, (29)
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where V ðtÞ is the resulting wind speed including contributions from both turbulence components and deformations

velocities. This gives the following linearised expression for aeqðtÞ:

aeqðtÞ ’ aðtÞ þ
c

2V
_aðtÞ þ

v01ðtÞ � _u01ðtÞ

V ðtÞ
, (30)

where aðtÞ is the mean wind contributions to the angle of attack. In Eq. (30), it is presumed that _u01ðtÞ, v01ðtÞ, aðtÞ and _aðtÞ
are sufficiently small, so that linearisation is possible. Even though only valid under fully attached flow, it is common

practice to determine aeqðtÞ from the downwash at the 3
4

c-point under separated flow conditions. Now, aðtÞ in Eq. (25) is

simply replaced with aeqðtÞ to introduce aeroelastic contributions.
4.2. Camber and thickness

The backbone curve given in Eq. (3) is derived for a thin plate section. Krenk (2006) derived the following expression

for the static lift curve in terms of separation for a wing section with a camber line yðxÞ and a thickness distribution hðxÞ

given as polynomials of the following form:

yðxÞ ¼ y0 1�
x

a

� �2	 

; hðxÞ ¼ h0

ffiffiffiffiffiffiffiffiffiffiffi
aþ x

2a

r
a� x

a
, (31)

where a is the half-chord length a ¼ c=2, y0 and h0 define the camber and thickness at x ¼ 0, respectively. In linearised

airfoil theory, it can be shown that the effect of camber and thickness is to change the zero lift angle, while the effect of

separation enters via the zero lift angle and the same factor as for the flat plate (Krenk, 2006). The lift force is then

given as

cL ¼
1þ

ffiffiffi
f

p
2

 !2

cL0 �
qcL

qa

	 ����
a0

aLðf Þ

!
, (32)

where cL0 is the lift at fully attached flow defined by f ¼ 1. As was the case of the thin plate model, special measures

need to be taken when fully separated conditions occur ðf ¼ 0Þ, again this is done by modifying cL0 as

cL0 ¼

qcL

qa

����
a0

aþ
y0
a

� �
; f40;

4cL �
qcL

qa

����
a0

3

4

y0
a
�

h0

a

	 

; f ¼ 0;

8>>>><
>>>>:

(33)

where cL in the second line of Eq. (33) is a measured value. The last term in the first line of Eq. (33) is the zero lift

angle at fully attached flow conditions. The angle aL is a modification of the zero lift angle due to separation

defined as

aL ¼ �
3

4
ð1� 6

ffiffiffi
f

p
þ 5f Þ

y0
a
þ
3

4
ð1�

ffiffiffi
f

p
Þ
h0

a
. (34)
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Inverting Eq. (32) gives f in terms of cL as a fourth-degree polynomial in
ffiffiffi
f

p
. The dynamic lift is then found by delaying

cL0 according to Eqs. (13) and (14), and f according to Eq. (16), and inserting in Eqs. (32) and (34). The effects from

leading edge separation may be added as an additional term to cL according to Eq. (20).

The formulation Eqs. (32)–(34) differs in notation from the formulation of Krenk (2006). Two considerations

are made. Firstly, cL should be equal to cL0 for fully attached flow conditions, i.e. f ¼ 1. Secondly, cL on the

left-hand side of Eq. (32) should be equal to measured values of cL for fully separated flow conditions, i.e. f ¼ 0.

Both are ensured when cL0 and aL are given as Eqs. (33) and (34), respectively, which correspond to Eq. (4) for the thin

plate.

A single case is considered to illustrate the effects of camber and thickness. The section shape is illustrated in Fig. 13.

The thin plate profile is used with y0 ¼ h0 ¼ 0 as a reference case. The same shape of the measured static data is used for

both cases. The numerical results for simulations using a harmonic variation of a with amplitude 8� and mean value

located at a ¼ 8� and 20�, respectively, are illustrated in Fig. 14. In the figure the thin plate reference case is indicated by

dashed lines, with thin dash lines indicating the static curve and thick ones indicating the results from harmonic

variation of a. For y0 ¼ 0 inserted in Eq. (32) gives zero lift at a ¼ 0, and the effect of camber effectively translates the
0.4
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Fig. 13. Section shape: y0 ¼ 0:1m, h0 ¼ 0:15m.
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backbone curve. The dynamic lift is translated with the backbone curve, however the shape is relatively unaffected by

camber. The thickness distribution introduces significant changes of the static degree of attachment. However, the

effective changes on the shape of the dynamic lift curve are minimal because the backbone curve also changes with h0.

Thus, thickness only introduces minor changes to the dynamic lift curve, while camber effectively translates the

backbone curve. The same effect can approximately be obtained to an acceptable degree by using the flat plate

reduction of the lift due to separation given in Eq. (3) and the measured profile data for the cambered profile as

backbone curve.

The moment coefficient for the thin plate is given in Eq. (9). However, both camber and thickness influence the

movement of the centre of pressure due to separation. Krenk (2006) obtained the following expression for the moment

coefficient for the considered profile:

cM ¼
p
2

1þ
ffiffiffi
f

p
2

 !2

1�
1

4
ð1� 6

ffiffiffi
f

p
þ 5f Þ

� �
a�

1�
ffiffiffi
f

p
2

 !2

ð1þ 6
ffiffiffi
f

p
þ 25f Þ

y0
a
þ

3

2
ð1� 3

ffiffiffi
f

p
Þ
h0

a

� �8<
:

9=
;. (35)

As seen, camber and thickness do not contribute to the moment coefficient at fully attached flow, but introduce a

change in moment as the attachment decreases. Also, the effects of camber and thickness appear merely as additions to

the thin plate solution.
5. Concluding remarks

In the present work, a model for determining the dynamic lift coefficient of a wind turbine wing profile has been

developed, based on the effects of various flow conditions. In the model three basic features have been included. Firstly,

a time delay is introduced under fully attached flow situations using two filter equations. Secondly, the time delay in the

motion of the separation point is described by one filter equation. And last, a contribution from leading edge separation

vortex and pressure peak is included by one filter equation.

The characteristics of the present model are a simplified description of attached flow, calculating lift by analytical

linearised flow theory in the entire range of the angle of attack and inclusion of a contribution from leading edge

separation. Additionally, a modified model for the delay on the attachment degree has been suggested, which operates

on a mapping of the profile onto a circle in the complex plane.

The model has been validated against dynamic test data of the Vertol 23010-1.58 profile. It should be emphasised

that the available experimental data for calibration of the various models have been limited, and thus the calibrated

model parameters are intended to illustrate the ability of the model to represent the basic dynamic load phenomena,

and not to serve as general properties of wind turbine profiles. It has been demonstrated that the present model is

capable of producing the correct cyclic behaviour of the lift under fully attached conditions. Also, under a dynamic stall

cycle, the present model is capable of modelling the maximum lift and reproducing lift data to a satisfactory degree.

A variety of different approaches of modelling dynamic stall has been described including the Beddoes–Leishman,

Risø, ONERA, Øye and Boeing–Vertol methods. Only the present model, Risø and Beddoes–Leishman models

are capable of reproducing the experimental data both at fully attached flow conditions and in the stall regime.

Seven parameters are introduced in the present model compared to twelve in the Beddoes–Leishman model

making calibration considerably less complicated. The Risø model introduces an interpolation scheme comparable

to that devised of the Øye model to introduce the effects of trailing edge separation. Further, it includes an extra

state variable to model trailing edge separation. However, the present model performs equally well using only one

state variable for trailing edge separation and introducing an extra state variable to account for leading edge

separation. Hence, the model presented here includes additional contributions without increased computational

costs.

The effects of camber and thickness have been analysed and it was found that camber introduces a significant

increase in lift; however, this effect may be included as a translation of the backbone curve for the thin plate model.

Only minor effects are observed from introducing thickness into the backbone formulation.

Finally, when assuming the position of the separation point to be known, the moment coefficient can be

found explicitly by use of linearised airfoil theory both for the thin plate and actual profile with camber and

thickness. Dynamic variation of the moment can be introduced directly when considering delayed separation,

however the effects of the travelling vortex on the centre of pressure have not been analysed, and further work should be

done.
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Appendix A. Other dynamic stall models

A.1. Beddoes–Leishman model

The Beddoes–Leishman model presented in what follows has been developed with the main purpose of calculating lift

loads on helicopter profiles, (Leishman, 1988, 2000; Leishman and Beddoes, 1986a, b; Beddoes, 1978). This semi-

empirical model takes into account the effect of flow compressibility under high-frequency movements. Additionally,

the model includes time delays under attached flow, and the contribution to the load coefficient from a discrete vortex

forming under leading edge separation. The model also describes the dynamic variation of moment and drag forces, but

only the lift model is included explicitly here.

Under fully attached flow conditions, where the load response is basically linear, the time delays of the lift coefficient

are modelled by the following relation:

cL0;d ðtÞ ¼ cL0ðaÞ � c1ðtÞ � c2ðtÞ þ c3ðtÞ þ c4ðtÞ, (A.1)

where c3ðtÞ and c4ðtÞ are impulsive contributions diminishing in time due to wave propagation. Beddoes and Leishman

give the following expression for finding the impulsive contributions:

_c3 þ o5c3 ¼
4

M
A3 _a; _c4 þ o6c4 ¼

1

M
A4

c

V
€a. (A.2)

M is the Mach number given as M ¼ V=V0, with V0 the speed of sound; c1ðtÞ and c2ðtÞ are determined from Eq. (13)

with A1 þ A2 ¼ 1. It should be noticed that while c1ðtÞ and c2ðtÞ are found using aeqðtÞ, c3ðtÞ and c4ðtÞ should be found

using the actual pitch rate _a and pitch acceleration €a.
To determine the dynamic attachment degree f d , two state variables are introduced in the following way. First a

retarded linear lift c0L0;d ðtÞ is introduced as a delayed state variable of the linear lift cL0;d ðtÞ, which should give a one-to-

one correspondence between the pressure coefficient and the dynamic lift at changing pitch rates. The following

differential equation is used for c0L0;d ðtÞ:

_c0L0;d ðtÞ ¼ �o7ðc
0
L0;d ðtÞ � cL0;d ðtÞÞ. (A.3)

An effective angle of attack af ¼ c0L0;d ðtÞ=ðdcL=daÞja0 þ a0 is then used to find the actual static attachment degree by

which f d can be found from Eq. (16) substituting a with af . Inserting the dynamic linear lift coefficient cL0;d and

attachment degree f d into Eq. (3) gives the dynamic lift coefficient. Notice that the Beddoes–Leishman model uses the

approach of a modified angle of attack, which falls into the third group of models.

The approach for finding the leading edge separation contribution to the lift is similar to that described in Eqs. (18)

and (19). Beddoes and Leishman relate this contribution to the discreet vortex forming as the flow separates. When a

certain pressure level is reached at the leading edge, the vortex is said to separate and start moving across the profile.

Hence, when c0L0;d is increased above a critical value, here named c0L0;v, the vortex starts to move with a velocity V=3. As

it reaches the trailing edge it is released into the wake, after which D_cLðtÞ ¼ 0.

Thus, one extra profile dependent parameter is introduced to describe the leading edge contribution, namely the

critical retarded lift c0L0;v and the travel velocity of the vortex. Beddoes (1978) found that the travel velocity of the vortex

at low Mach number is approximately V=3.
The Beddoes–Leishman model includes seven state variables for every wing section at which the lift is calculated.

Four variables c1, c2, c3 and c4 to describe the delayed linear lift, two variables c0L0;d and f d to describe the dynamic

movement of the separation angle and one variable cL;v to describe the induced lift from the vortex forming under

leading edge separation. In matrix formulation the linear differential equations describing these state variables can be

organised as follows:

_zðtÞ ¼ AzðtÞ þ b0ða; _a; €aÞ þ b1 _cL0ðtÞ, (A.4)
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where

zðtÞ ¼

c1ðtÞ

c2ðtÞ

c3ðtÞ

c4ðtÞ

c0L0;d ðtÞ

f d ðtÞ

cL;vðtÞ

2
666666666664

3
777777777775
; A ¼

�o1 0 0 0 0 0 0

0 �o2 0 0 0 0 0

0 0 �o5 0 0 0 0

0 0 0 �o6 0 0 0

�o7 �o7 o7 o7 �o7 0 0

0 0 0 0 0 �o3 0

0 0 0 0 0 0 �o4

2
666666666664

3
777777777775
,

b1 ¼

A1

A2

0

0

0

0

0

2
666666666664

3
777777777775
; b0ða; _a; €aÞ ¼

0

0
4

M
A3 _a

1

M
A4

c

V
€a

o7cL0ðaÞ

o3f ðaf Þ

D_cLðtÞHð1� tÞHð_aÞ

2
666666666666664

3
777777777777775

, (A.5)

where t is a dimensionless variable describing the placement of the leading edge separation vortex. For the vortex

placed at the leading and trailing edge, t ¼ 0 and 1, respectively. The time change of t, for a travel velocity of the vortex
at V=3, can be found as

_t ¼
V

3c
Hðc0L0;d � c0L0;vÞ. (A.6)

The total lift coefficient then follows from the state variables as

cLðtÞ ¼
1þ

ffiffiffiffiffiffiffiffiffiffi
f d ðtÞ

p
2

 !2

½cL0ðaÞ � c1ðtÞ � c2ðtÞ þ c3ðtÞ þ c4ðtÞ� þ cL;vðtÞ, (A.7)

where f d ðtÞ is a function of c0L0;d ðtÞ through af .
A.2. ONERA model

The ONERA model (Tran and Petot, 1981) is based on the characteristics of the lift curve. The same arguments and

system of equations are used for dealing with the drag and moment curves. Here we first assume that the lift is

independent of the Mach number and that the difference between the unsteady and steady lift coefficients is small. A

classical way, which is also adopted in the previously described models, is to introduce the history effects of the lift as a

differential equation. A functional dependence between cL;d , a, and the time derivatives of up to order N of both is

postulated, as follows:

AðcL;d ; a; _cL;d ; _a; €cL;d ; €a; . . .Þ ¼ 0. (A.8)

The function A is nonlinear, since it is assumed to describe the dynamic stall behaviour. However, it is assumed that the

dynamic lift may be linearised around the static lift cL;s at a, corresponding to the first-order Taylor expansion

qA

qcL;d
ðcL;d � cL;sÞ þ

qA

q_cL;d
_cL;d þ

qA

q€cL;d
€cL;d þ � � � þ

qA

q_a
_aþ

qA

q€a
€aþ � � � ¼ 0, (A.9)

where it has been used that AðcL;d ; a; 0; 0; . . .Þ ¼ 0. This linearisation is only valid for small changes of the angle of attack

with small deviations between the dynamic and static lift. During a dynamic stall cycle, these variations may become

rather large, but comparison with experimental data seems to justify Eq. (A.9). Derivatives with respect to a of higher

order than two may be neglected, and in terms of frequencies one real pole and two complex conjugated poles seem to

capture the characteristics of the lift. Hence, derivatives of higher order than three with respect to cL;d may be neglected.
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This reduces Eq. (A.9) to

qA

qcL;d
cL;d þ

qA

q_cL;d
_cL;d þ

qA

q€cL;d
€cL;d þ

qA

qc
...

L;d
c
...

L;d ¼
qA

qcL;d
cL;s �

qA

q_a
_a�

qA

q€a
€a. (A.10)

Additionally, the following observations are made. At low angles of attack, in the linear regime, measured frequency

response functions are smooth and continuous. By contrast, in the stall regime, rapid variations are registered. The first

statement leads to the conclusion that in the linear regime the lift may be modelled by a first-order differential equation

with one real negative pole. In the stall area the lift development may then be modelled as a second-order differential

equation with two complex conjugated poles with negative real part. The derivatives of A in Eq. (A.10) are further

assumed to be time independent. This leads to the following set of equations:

_c1 þ o1c1 ¼ o1cL0 þ ðo1B1 þ B2Þ_aþ B1 €a, (A.11)

€c2 þ 2zo2 _c2 þ o2
2ð1þ z2Þc2 ¼ �o2

2ð1þ z2ÞðDcL þ B3D_cLÞ, (A.12)

cL;d ¼ c1 þ c2, (A.13)

where DcL ¼ cL0 � cL;s. Eq. (A.11) accounts for the negative real pole �o1 and Eq. (A.12) accounts for the complex

conjugated poles �zo2 � io2. The right-hand side of Eq. (A.12) ensures that the complex conjugated poles only affect

the solution in the stall regime, where DcLa0. In the static limit c1 ¼ cL0 and c2 ¼ �DcL giving cL;d ¼ cL0�

ðcL0 � cL;sÞ ¼ cL;s.

It is assumed that the memory effect on the circulation built-up is modelled by a single first-order filter, rather than

the two first-order filters used in the proposed model. Then it is possible to express the differential equation for cL0;d ðtÞ,

using the first two terms of Eq. (12) inserted in Eq. (11) and differentiating with respect to time. This gives

_cL0;d þ o1cL0;d ¼ o1cL0 þ ð1� A1Þ
qcL

qa
_a. (A.14)

Comparing Eqs. (A.14) and (A.11) reveals that for a first-order filter the dynamic lift is uninfluenced by €a. Hence,

B1 ¼ 0 and B2 ¼ ð1� A1ÞqcL=qa. It should be noticed that the ONERA model, as is the case for the proposed model

and the Beddoes–Leishman model, includes a contribution from D_cL. The first two models relate this contribution to

the leading edge vortex build-up.

Small amplitude oscillations in the linear regime make it possible to determine the variables o1 and B2. With these

known, small amplitude oscillations in the stall regime are used to determine the parameters z, o2 and B3. The

performance of the model should then be verified from large amplitude oscillations at various frequencies.

Finally, the state formulation of the ONERA model reads

_z ¼ Azþ bþ Ba, (A.15)

z ¼

c1

c2

_c2

2
64

3
75; A ¼

�o1 0 0

0 0 1

0 �2zo2 �od

2
64

3
75; a ¼

a

_a

� �
,

b ¼

0

0

odcL

2
64

3
75; B ¼

o1
qcL

qa

����
a0

ð1� A1Þ
qcL

qa

����
a0

0 0

�o2
d

qcL

qa

����
a0

�o2
dA2

qcL

qa

����
a0

�
qcL

qa

����
a

 !

2
6666664

3
7777775
,

cL;d ¼ c1 þ c2, (A.16)

where od ¼ o2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
and B3 is changed to A2 for consistency in notation. It should be noticed that the second term of

row three, column two of B includes the slope of cL at the present angle of attack. The ONERA model includes three

state variables and five unknown parameters, o1, o2, A1, A2 and z, to be determined from experimental data.
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Fig. 15. Interpolation curves in the Øye model.

J.W. Larsen et al. / Journal of Fluids and Structures 23 (2007) 959–982 979
A.3. Øye model

As mentioned, the nonlinearity in the aeroelastic load model is essentially due to the motion of the separation point

on the suction side of the profile. Øye (1991) has suggested a simple linear first-order filter model, which is based on the

same static data requirements as the Beddoes–Leishman model and the proposed model. The essence of the Øye model

is that relationship (3) for finding f is replaced by an interpolation between the lift coefficient at fully attached flow

cL0ðaÞ determined from Eq. (2) and the static lift coefficient cL1ðaÞ at fully separated flow, corresponding to attachment

degrees f ¼ 1 and 0, respectively. The flow is defined to be fully separated at a given large angle of attack, asep, so f ¼ 0

for aXasep. Øye assumes that the initial and final slopes of cL1ðaÞ may be chosen as qcL1=qaja0 ¼
1
2
dcL=daja0 and

qcL1=qajasep ¼
1
12

dcL=daja0 . Intermediate values of cL1ðaÞ are determined by Hermite interpolation. The interpolation

curves cL0 and cL1 are shown in Fig. 15. Then, for aoasep, the static attachment degree f is determined by linear

interpolation between the functional values cL0and cL1, i.e.

f ¼
cL � cL1

cL0 � cL1
. (A.17)

Using f in Eq. (16), the dynamic attachment degree can be found. Øye suggests that a value of o3 ¼ V=4c can be used

(Øye, 1991). Finally, the dynamic lift coefficient is determined from Eq. (A.17) by substituting f with f d giving

cLðtÞ ¼ f d ðtÞcL0 þ ð1� f d ðtÞÞcL1. (A.18)

The Øye model is based on only one state variable f d ðtÞ, which introduces the dynamic effects under dynamic stall.

However, no dynamic effects are introduced during attached flow conditions. Four parameters are introduced: the

initial and final slopes of cL1, the timescale parameter o3 and the angle of attack defining full separation asep. The first
two are defined by Øye and are assumed to be profile independent. Hence, two profile dependent parameters need

calibration.

A.4. Risø model

The Risø model developed by Hansen et al. (2004) at Risø National Laboratory, Denmark, is a modified version of

the Beddoes–Leishman model using only four state variables: two to model the unsteady lift for attached flow

conditions, and two to model the dynamics of trailing edge separation. Leading edge separation and the dynamics

between the travelling and trailing edge vortices are disregarded in this model. Also, dynamic models for moment and

drag have been formulated but will not be described in the following.

An approach similar to the Øye model is used to model the nonlinear quasi-static lift. Assuming knowledge of the

separation point and the lift under fully attached flow and fully separated flow conditions, respectively, the lift is given

by

cL ¼ fcL0 þ ð1� f ÞcL1. (A.19)

The linear lift cL0 is found from the lift slope at a0, and the position of the separation point given by f is evaluated from

Eq. (3). The restriction is that if f as determined from Eq. (3) is larger than 1.0, it is set equal to 1.0, and when full
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separation occurs, f is set equal to 0. From a given set of measured cL, f is found from Eq. (3) and cL1 may be

determined from Eq. (A.19). Inverting Eq. (A.19) creates a singularity at f ¼ 1, i.e. at fully attached flows. Under such

conditions, cL1 is set to half the linear lift, i.e. cL1ðf ¼ 1Þ ¼ cL0=2.
To introduce dynamic effects f and cL0 are modified, as was the case for the proposed model, Beddoes–Leishman

model and Øye model. Under fully attached flow conditions, the Risø model works on a modified angle of attack

instead of directly on the linear lift. The dynamic angle of attack ad is given as

ad ðtÞ ¼ að1� A1 � A2Þ þ c1ðtÞ þ c2ðtÞ, (A.20)

where

_ci þ oi þ
_V

V

	 

ci: ¼ oiAia. (A.21)

Now the dynamic linear lift is evaluated as

cL0;d ¼ cL0ðad Þ þ
pc_a
2V

. (A.22)

The Risø model includes the most important contribution from added mass. This term does not introduce additional state

variables or parameters to be calibrated; hence, it may easily be included in any of the other models. To introduce dynamic

effects on the separation point motion, the same approach as the Beddoes–Leishman model is used. A retarded linear lift

c0L0ðtÞ is found from Eq. (A.3), an effective angle of attack, not to be compared with the equivalent angle of attack described

in Section 4, is found as af ¼ c0L0=ðdcL=daÞja0 þ a0, and the delayed separation point f d is determined from Eq. (16). This

introduces two additional state variables: c0L0 and f d . In state space formulation the Risø may be written as follows:

_z ¼ Azþ b, (A.23)

z ¼

c1

c2

c0L0

f d

2
666664

3
777775; A ¼

� o1 þ
_V

V

	 

0 0 0

0 � o2 þ
_V

V

	 

0 0

0 0 �o7 0

0 0 0 �o3

2
66666666664

3
77777777775
,

b ¼

o1A1a

o2A2a

o7 cL0ðad Þ þ
pc_a
2V

	 


o3f ðaf Þ

2
66666664

3
77777775
, ðA:24Þ

cL;d ðtÞ ¼ f d ðtÞcL0ðad Þ þ ð1� f d ÞcL1ðad Þ. (A.25)

A.5. Boeing–Vertol model

The Boeing–Vertol model (Tarzanin, 1972) assumes a relationship between the static and dynamic stall angle to

determine a dynamic angle of attack ad in the entire range of a. The relationship obtained by Gross and Harris (1969) is

given as

ads � as ¼ A1

ffiffiffiffiffiffiffiffi
cj_aj
2V

r
, (A.26)

where ads is the dynamic stall angle as indicated in Fig. 16. Hence, the dynamic angle of attack should in some way be

delayed with the right-hand side of Eq. (A.26) compared with the static angle of attack. This suggests setting

ad ¼ a� A1

ffiffiffiffiffiffiffiffi
cj_aj
2V

r
_a
j_aj

, (A.27)
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where a sign factor has been included in the delay term in order to consider both positive and negative values of _a. Now

cL;d is determined as

cL;d ¼ cLð0Þ þ
cLðad Þ � cLð0Þ

ad

a. (A.28)

The theory of the model is illustrated in Fig. 16, where the static and dynamic lift curves are plotted as dashed and

bold full lines, respectively. Consider an angle of attack a1 in the linear domain during increasing a, hence _a40. Using

Eq. (A.27) gives a related dynamic angle of attack ad1 which is less than a1. Now, cLðad1Þ is evaluated indicated by ð�Þ,

the slope of the line going from cLðad Þ is evaluated, giving the fraction in Eq. (A.28). Finally, cL;d illustrated by ð�Þ is

determined from Eq. (A.28). In the linear domain, the slope determined at ad is equal to the slope of the static lift, thus,

no distinction can be made between the static and dynamic lift curve. Now, consider an angle of attack a2 in the stall

regime. Again, the corresponding dynamic angle of attack ad2 is found from Eq. (A.27). Then, the slope determined at

ad is less than that of the fully attached region, making cL;d ða2Þ less than that of a linear growing lift. This creates a

dynamic stall cyclic behaviour as indicated in Fig. 16. For _a ¼ 0 it is easily seen that the combination of Eqs. (A.27) and

(A.28) generates the static lift, i.e. the dynamic curve crosses the static curve for _a ¼ 0.
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